Course |
Sem. Cr. Hrs. |
First Year |
MATH-181 |
General Education - Mathematical Perspective A: Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisite: A- or better in MATH-111 or A- or better in ((NMTH-260 or NMTH-272 or NMTH-275) and NMTH-220) or a math placement test score greater than or equal to 70 or department permission to enroll in this class.) Lecture 6 (Fall, Spring, Summer).
|
4 |
MATH-182 |
General Education - Mathematical Perspective B: Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in (MATH-181 or MATH-173 or 1016-282) or (MATH-171 and MATH-180) or equivalent course(s).) Lecture 6 (Fall, Spring, Summer).
|
4 |
MECE-102 |
Engineering Mechanics Laboratory
This course examines classical Newtonian mechanics from a calculus-based fundamental perspective with close coupling to integrated laboratory experiences. Topics include kinematics; Newton's laws of motion; work-energy theorem, and power; systems of particles and linear momentum; circular motion and rotation; mechanical waves, and oscillations and gravitation within the context of mechanical engineering, using mechanical engineering conventions and nomenclature. Each Topic is reviewed in lecture, and then thoroughly studied in an accompanying laboratory session. Students conduct experiments using modern data acquisition technology; and analyze, interpret, and present the results using modern computer software. (Prerequisite: This class is restricted to MECE-BS or ENGRX-UND or MECEDU-BS students. Co-requisites: MATH-171 or MATH-181 or MATH-181A or MATH-172 or equivalent course.) Lec/Lab 5 (Fall, Spring).
|
3 |
MECE-103 |
Statics
This basic course treats the equilibrium of particles and rigid bodies under the action of forces. It integrates the mathematical subjects of calculus, vector algebra and simultaneous algebraic equations with the physical concepts of equilibrium in two and three dimensions. Topics include concepts of force and moment, friction, centroids and moments of inertia, and equilibrium of trusses, frames and machines. (Prerequisites: MECE-102 or PHYS-211 or PHYS-211A or PHYS-206 or equivalent course and restricted to MECE-BS or MECEDU-BS or MECE-MN or ENGRX-UND students. Co-requisites: MATH-182 or MATH-182A or MATH-173 or equivalent course.) Lecture 3 (Fall, Spring).
|
3 |
MECE-104 |
Engineering Design Tools
This course combines the elements of Design process, Computer Aided Design (CAD), and Machine Shop Fabrication in the context of a design/build/test project. You will learn how to work in a team and use a formalized design process to justify and support design choices, how to use a CAD package to create three-dimensional models and assemblies, and how to safely fabricate metal parts using vertical mills and lathes. (This course is restricted to MECE-BS or MECE-MN or ENGRX-UND or MECEDU-BS Major students.) Lab 1 (Fall, Spring).
|
3 |
MECE-117 |
Introduction to Programming for Engineers
This course provides the student with an overview of the use of computer programming for solving problems encountered in engineering. Students will learn how to develop an algorithm for solving a problem and to translate that algorithm into computer code using fundamental structured programming techniques. The programming language(s) employed are selected to support computational problem-solving in higher-level mechanical engineering courses. (This course is restricted to students in MECE-BS or ENGRX-UND or MECEDU-BS. Co-requisite: MATH-181 or MATH-181A or MATH-172 or equivalent course.) Lec/Lab 4 (Fall, Spring).
|
3 |
YOPS-010 |
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
|
0 |
|
General Education - First Year Writing (WI)
|
3 |
|
General Education - Ethical Perspective
|
3 |
|
General Education - Artistic Perspective
|
3 |
|
General Education - Elective
|
3 |
Second Year |
EGEN-099 |
Engineering Co-op Preparation
This course will prepare students, who are entering their second year of study, for both the job search and employment in the field of engineering. Students will learn strategies for conducting a successful job search, including the preparation of resumes and cover letters; behavioral interviewing techniques and effective use of social media in the application process. Professional and ethical responsibilities during the job search and for co-op and subsequent professional experiences will be discussed. (This course is restricted to students in Kate Gleason College of Engineering with at least 2nd year standing.) Lecture 1 (Fall, Spring).
|
0 |
MATH-219 |
Multivariable Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes the study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, and includes applications in physics. Credit cannot be granted for both this course and MATH-221. (Prerequisite: C- or better MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
|
3 |
MATH-231 |
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring, Summer).
|
3 |
MECE-110 |
Thermodynamics I
A basic course introducing the classical theory of thermodynamics. Applications of the first law of thermodynamics are used to introduce the student to thermodynamic processes for closed and open systems. The Clausius and Kelvin-Planck statements of the second law are then correlated with the concept of entropy and enthalpy to investigate both real and reversible processes and the thermodynamic properties of pure substances. These techniques are then used to evaluate thermodynamic cycles for a variety of applications in power generation and refrigeration. Students are then introduced to techniques to Excellerate thermal efficiency of these cycles such as reheat, regeneration, and co-generation. (Prerequisites: MECE-102 or PHYS-211 or PHYS-211A or PHYS-206 or equivalent course. Co-requisites: MATH-182 or or MATH-182A or MATH-173 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS or MECE-MN or ENGRX-UND students.) Lecture 3 (Fall, Spring).
|
3 |
MECE-203 |
Strength of Materials I
A basic course in the fundamental principles of the mechanics of deformable media, including stress, strain, deflections and the relationships among them. The basic loadings of tension, compression, shear, torsion and bending are also included. (Prerequisites: MECE-103 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS or MECE-MN students.) Lecture 3 (Fall, Spring).
|
3 |
MECE-204 |
Strength of Materials I Laboratory
A required laboratory course taken concurrently with MECE-203. Students investigate a metallic material’s response to axial, torsional, and bending loads. Students are introduced to reduction and analysis of data, basic experimental techniques, and effective report writing. (This course is restricted to students in MECE-BS or MECEDU-BS or MECE-MN or ENGRX-UND students. Co-requisites: MECE-203) Lab 2 (Fall, Spring).
|
1 |
MECE-205 |
Dynamics
A basic course in the kinematics and kinetics of particles and rigid bodies. Newton's Laws and the theorems of work-energy and impulse momentum are applied to a variety of particle problems. Systems of particles are employed to transition to the analysis of rigid body problems. Absolute and relative motion are used to investigate the kinematics and kinetics of systems of rigid bodies. Newton's Laws are applied to a variety of two-dimensional rigid body problems. (Prerequisites: MECE-103 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS or MECE-MN students.) Lecture 3 (Fall, Spring).
|
3 |
MECE-210 |
Fluid Mechanics I
This course investigates the physical characteristics of a fluid: density, stress, pressure, viscosity, temperature, vapor pressure, compressibility. Descriptions of flows include Lagrangian and Eulerian; stream-lines, path-lines and streak-lines. Classification of flows include fluid statics, hydrostatic pressure at a point, pressure field in a static fluid, manometry, forces on submerged surfaces, buoyancy, standard and adiabatic atmospheres. Flow fields and fundamental laws are investigated including systems and control volumes, Reynolds Transport theorem, integral control volume analysis of basic equations for stationary and moving control volumes. Inviscid Bernoulli and the Engineering Bernoulli equation are utilized when analyzing fluid systems. Other concepts studied include incompressible flow in pipes; laminar and turbulent flows, separation phenomenon, dimensional analysis. (Prerequisites: MECE-110 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS or MECE-MN students.) Lecture 3 (Fall, Spring).
|
3 |
MECE-211 |
Engineering Measurements Lab (WI-PR)
This course is focused on developing skills and knowledge in the areas of instrumentation, computer data acquisition (DAQ), measurement theory, uncertainty analysis, data analysis, and technical report writing. Specific Topics that are covered include: • Physical dimension variability assessment • Centrifugal pump performance evaluation • Temperature, pressure, and flow instrumentation and measurements • LabVIEW programming and DAQ hardware application • Transient measurements including computer data acquisition • Digital signal input and output Each Topic includes background theoretical content with some individual exercises and then a team-based lab with accompanying lab report. Reports are submitted first in draft form and are reviewed by peers in class before preparing them for final draft submission (Prerequisites: MECE-102 or PHYS-211 or PHYS-211A or PHYS-206 or equivalent course and restricted to MECE-BS or MECEDU-BS students.) Lec/Lab 3 (Fall, Spring).
|
2 |
|
General Education - Global Perspective
|
3 |
|
General Education - Social Perspective
|
3 |
|
General Education - Scientific Principles Perspective
|
3 |
|
General Education - Immersion 1
|
3 |
Third Year |
EEEE-281 |
Circuits I
Covers basics of DC circuit analysis starting with the definition of voltage, current, resistance, power and energy. Linearity and superposition, together with Kirchhoff's laws, are applied to analysis of circuits having series, parallel and other combinations of circuit elements. Thevenin, Norton and maximum power transfer theorems are proved and applied. Circuits with ideal op-amps are introduced. Inductance and capacitance are introduced and the transient response of RL, RC and RLC circuits to step inputs is established. Practical aspects of the properties of passive devices and batteries are discussed, as are the characteristics of battery-powered circuitry. The laboratory component incorporates use of both computer and manually controlled instrumentation including power supplies, signal generators and oscilloscopes to reinforce concepts discussed in class as well as circuit design and simulation software. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lab 3 (Fall, Spring, Summer).
|
3 |
MECE-305 |
Materials Science with Applications
This course provides the student with an overview of structure, properties, and processing of metals, polymers, and ceramics. Relevant basic manufacturing processes and materials selection is also discussed. There is a particular emphasis on steels, but significant attention is given to non-ferrous metals, ceramics, and polymers (Prerequisite: MECE-203 or equivalent course. This course is restricted to students in MECE-BS, MECEDU-BS, MECE-MN or ENGRX-UND programs.) Lecture 3 (Fall, Spring).
|
3 |
MECE-306 |
Materials Science with Applications Laboratory
A required laboratory course taken concurrently with MECE-304 Fundamentals of Materials Science or MECE-305 Materials Science with Applications. Students investigate the effects of the structure, alloying, and processing of materials on their mechanical properties. Students are also introduced to standardized testing methods and effective, professional, report writing. (This course is restricted to students in MECE-BS or MECEDU-BS or MECE-MN or ISEE-BS or ISEEDU-BS or ENGRX-UND students.) Lab 2 (Fall, Spring).
|
1 |
MECE-320 |
System Dynamics
This required course introduces the student to lumped parameter system modeling, analysis and design. The determination and solution of differential equations that model system behavior is a vital aspect of the course. System response phenomena are characterized in both time and frequency domains and evaluated based on performance criteria. Laboratory exercises enhance student proficiency with model simulation, basic instrumentation, data acquisition, data analysis, and model validation. (Prerequisites: MECE-205 and MATH-231 or equivalent courses. Co-requisites: EEEE-281 This course is restricted to MECE-BS or MECEDU-BS or MECE-MN students.) Lec/Lab 4 (Fall, Spring).
|
3 |
MATH-326 |
Boundary Value Problems
This course provides an introduction to boundary value problems. Topics include Fourier series, separation of variables, Laplace's equation, the heat equation, and the wave equation in Cartesian and polar coordinate systems. (Prerequisites: (MATH-231 or MATH-233) and (MATH-219 or MATH-221) or equivalent courses.) Lecture 3 (Fall, Spring).
|
3 |
MECE-499 |
Cooperative Education (fall, summer)
Nominally three months of full-time, paid employment in the mechanical engineering field. (Prerequisites: (MECE-110 and MECE-203 and MECE-211 and EGEN-099) or MECE-499. This course is restricted to MECE-BS or MECEDU-BS students.) CO OP (Fall, Spring, Summer).
|
0 |
PHYS-212 |
General Education - Natural Science Inquiry Perspective: University Physics II
This course is a continuation of PHYS-211, University Physics I. Topics include electrostatics, Gauss' law, electric field and potential, capacitance, resistance, DC circuits, magnetic field, Ampere's law, inductance, and geometrical and physical optics. The course is taught in a lecture/workshop format that integrates the material traditionally found in separate lecture and laboratory courses. (Prerequisites: (PHYS-211 or PHYS-211A or PHYS-206 or PHYS-216) or (MECE-102, MECE-103 and MECE-205) and (MATH-182 or MATH-172 or MATH-182A) or equivalent courses. Grades of C- or better are required in all prerequisite courses.) Lec/Lab 6 (Fall, Spring).
|
4 |
Fourth Year |
MATH-241 |
Linear Algebra
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course. (Prerequisites: MATH-190 or MATH-200 or MATH-219 or MATH-220 or MATH-221 or MATH-221H or equivalent course.) Lecture 3 (Fall, Spring).
|
3 |
MECE-301 |
Engineering Applications Laboratory
As a modification of the more “traditional” lab approach, students work in teams to complete an open-ended project involving theoretical and empirical analyses of an assigned system, applying engineering concepts and skills learned throughout prior courses. After successfully completing this course, students will have achieved a higher level of understanding of, and proficiency in, the tasks of qualitative treatment of real systems, development and implementation of analytical models, design and implementation of experimental investigations, and validation of results. (Prerequisites: (MECE-102 or PHYS-211 or PHYS-211A or PHYS-206) and MECE-104 and MECE-211 or equivalent courses and is restricted to MECE-BS or MECEDU-BS students. Co-requisites: MECE-210 or equivalent course.) Lab 2 (Fall, Spring).
|
2 |
MECE-310 |
Heat Transfer I
A first course in the fundamentals of heat transfer by conduction, convection and radiation, together with applications to typical engineering systems. Topics include one- and two-dimensional steady state and transient heat conduction, radiation exchange between black and gray surfaces, correlation equations for laminar/turbulent internal and external convection, and an introduction to heat exchangers analysis and design by LMTD and NTU methods. (Prerequisites: MECE-210 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS or MECE-MN students.) Lecture 3 (Fall, Spring).
|
3 |
MECE-348 |
Contemporary Issues
This course introduces students to contemporary technologies in a specific field of mechanical engineering. In the process of exploring these technologies, the course teaches and applies skills related to communication, economic analysis, ethical analysis, and explores the positive and negative effects of technologies on our society and environment. Specific attention is focused on current events both domestically and internationally. (Prerequisite or Co-requisites: MECE-499 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS students.) Lecture 3 (Fall, Spring).
|
3 |
MECE-499 |
Cooperative Education (summer)
Nominally three months of full-time, paid employment in the mechanical engineering field. (Prerequisites: (MECE-110 and MECE-203 and MECE-211 and EGEN-099) or MECE-499. This course is restricted to MECE-BS or MECEDU-BS students.) CO OP (Fall, Spring, Summer).
|
0 |
PUBL-701 |
Graduate Policy Analysis
This course provides graduate students with necessary tools to help them become effective policy analysts. The course places particular emphasis on understanding the policy process, the different approaches to policy analysis, and the application of quantitative and qualitative methods for evaluating public policies. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels. Lecture 3 (Fall).
|
3 |
PUBL-702 |
Graduate Decision Analysis
This course provides students with an introduction to decision science and analysis. The course focuses on several important tools for making good decisions, including decision trees, including forecasting, risk analysis, and multi-attribute decision making. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels. Lecture 3 (Spring).
|
3 |
STAT-205 |
Applied Statistics
This course covers basic statistical concepts and techniques including descriptive statistics, probability, inference, and quality control. The statistical package Minitab will be used to reinforce these techniques. The focus of this course is on statistical applications and quality improvement in engineering. This course is intended for engineering programs and has a calculus prerequisite. Note: This course may not be taken for credit if credit is to be earned in STAT-145 or STAT-155 or MATH 252.. (Prerequisite: MATH-173 or MATH-182 or MATH-182A or equivalent course.) Lecture 3 (Fall, Spring).
|
3 |
STSO-710 |
Graduate Science and Technology Policy Seminar
Examines how federal and international policies are developed to influence research and development, innovation, and the transfer of technology in the United States and other selected nations. Students in the course will apply basic policy skills, concepts, and methods to contemporary science and technology policy topics. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Seminar (Fall).
|
3 |
|
ME Extended Core Elective
|
3 |
|
General Education - ME Approved Science Elective
|
3 |
|
General Education - Immersion 2
|
3 |
|
Open Elective
|
3 |
Fifth Year |
MECE-497 |
Multidisciplinary Sr. Design I
This is the first in a two-course sequence oriented to the solution of real-world engineering design problems. This is a capstone learning experience that integrates engineering theory, principles, and processes within a collaborative environment. Multidisciplinary student teams follow a systems engineering design process, which includes assessing customer needs, developing engineering specifications, generating and evaluating concepts, choosing an approach, developing the details of the design, and implementing the design to the extent feasible, for example by building and testing a prototype or implementing a chosen set of improvements to a process. This first course focuses primarily on defining the problem and developing the design, but may include elements of build/ implementation. The second course may include elements of design, but focuses on build/implementation and communicating information about the final design. (Prerequisites: MECE-301 and MECE-499 or equivalent courses. This course is restricted to MECE-BS or MECEDU-BS students.) Lecture 6 (Fall, Spring).
|
3 |
MECE-498 |
Multidisciplinary Sr. Design II
This is the second in a two-course sequence oriented to the solution of real-world engineering design problems. This is a capstone learning experience that integrates engineering theory, principles, and processes within a collaborative environment. Multidisciplinary student teams follow a systems engineering design process, which includes assessing customer needs, developing engineering specifications, generating and evaluating concepts, choosing an approach, developing the details of the design, and implementing the design to the extent feasible, for example by building and testing a prototype or implementing a chosen set of improvements to a process. The first course focuses primarily on defining the problem and developing the design, but may include elements of build/ implementation. This second course may include elements of design, but focuses on build/implementation and communicating information about the final design. (Prerequisites: MECE-497 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS students.) Lecture 6 (Fall, Spring).
|
3 |
PUBL-700 |
Readings in Public Policy
An in-depth inquiry into key contemporary public policy issues. Students will be exposed to a wide range of important public policy texts, and will learn how to write a literature review in a policy area of their choosing. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Seminar (Fall).
|
3 |
PUBL-703 |
Evaluation and Research Design
The focus of this course is on evaluation of program outcomes and research design. Students will explore the questions and methodologies associated with meeting programmatic outcomes, secondary or unanticipated effects, and an analysis of alternative means for achieving program outcomes. Critique of evaluation research methodologies will also be considered. Seminar (Spring).
|
3 |
|
Open Elective
|
3 |
|
Applied Elective/Public Policy Electives
|
6 |
|
Open Elective/Public Policy Elective
|
3 |
|
General Education - Immersion 3
|
3 |
Choose one of the following: |
6
|
PUBL-785 |
Capstone Research Experience
The Public Policy Capstone Experience serves as a culminating experience for those MS in Science, Technology and Public Policy students who chose this option in the Public Policy Department. Over the course of the semester, students will have the opportunity to investigate and address contemporary Topics in science and technology policy using analytic skills and theoretical knowledge learned over the course of their MS degree. Project 1 (Fall, Spring, Summer).
|
|
PUBL-790 |
Public Policy Thesis
The master's thesis in science, technology, and public policy requires the student to select a thesis topic, advisor and committee; prepare a written thesis proposal for approval by the faculty; present and defend the thesis before a thesis committee; and submit a bound copy of the thesis to the library and to the program chair. (Enrollment in this course requires permission from the department offering the course.) Thesis 3 (Fall, Spring, Summer).
|
|
PUBL-798 |
Comprehensive test plus 2 Graduate Electives
|
|
Total Semester Credit Hours |
150
|